Phase-Change-Material-Impregnated Wood for Potential Energy-Saving Building Materials

Author:

Can Ahmet12ORCID,Lee Seng Hua34ORCID,Antov Petar5ORCID,Abd Ghani Muhammad Aizat6

Affiliation:

1. Faculty of Forestry, Bartın University, Bartın 74100, Turkey

2. Faculty of Forestry, Bursa Technical University, Bursa 16310, Turkey

3. Department of Wood Industry, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM) Cawangan Pahang Kampus Jengka, Bandar Tun Razak 26400, Pahang, Malaysia

4. Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia

5. Faculty of Forest Industry, University of Forestry, 1797 Sofia, Bulgaria

6. Faculty of Tropical Forestry, University Malaysia Sabah, Pantai UMS, Jalan Masjid, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia

Abstract

PCMs (phase change materials) are ideal for thermal management solutions in buildings. This is because they release and store thermal energy during melting and freezing. When this material freezes, it releases a lot of energy in the form of latent heat of fusion or crystallization energy. Conversely, when the material melts, it absorbs the same amount of energy from its surroundings as it changes from a solid to a liquid state. In this study, Oriental spruce (Picea orientalis L.) sapwood was impregnated with three different commercial PCMs. The biological properties and the hygroscopic and thermal performance of the PCM-impregnated wood were studied. The morphology of PCM-impregnated wood was characterized through the use of scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). PCM-impregnated wood demonstrated low performance in terms of storing and releasing heat during phase change processes, as confirmed by DSC. The results show that PCMs possess excellent thermal stability at working temperatures, and the most satisfying sample is PCM1W, with a phase change enthalpy of 40.34 J/g and a phase change temperature of 21.49 °C. This study revealed that PCMs are resistant to wood-destroying fungi. After the 96 h water absorption test, the water absorption of the wood samples decreased by 28%, and the tangential swelling decreased by 75%. In addition, it has been proven on a laboratory scale that the PCM material used is highly resistant to biological attacks. However, large-scale pilot studies are still needed.

Funder

Universiti Malaysia Sabah

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3