Accurate Criteria for Broken Bar Detection in Induction Motors Based on the Wavelet (Packet) Transform

Author:

Antonino-Daviu Jose Alfonso1ORCID,Martínez-Giménez Félix2ORCID,Peris Alfred2ORCID,Ramezanzadeh Nasrin2ORCID,Rodenas Francisco2ORCID

Affiliation:

1. Instituto Tecnológico de la Energía, Universitat Politècnica de València, 46022 València, Spain

2. Institut Universitari de Matemàtica Pura i Aplicada, Universitat Politècnica de València, 46022 València, Spain

Abstract

Finding reliable and robust criteria for the detection of broken bars in induction motors is key for the maintenance of industrial engines, and some of the most efficient methods analyze the stator start-up current. Due to the transitory characteristics and short duration of the signal, suitable time-frequency mathematical tools are very useful for this purpose. We propose here algorithms based on the discrete wavelet and wavelet packet transform, combined with other tools in signal processing, to offer an accurate quantitative method for failure detection due to broken bars in induction motors. A good selection of the wavelet family is important for a good performance of the indicator, and the discrete approximation of the Meyer wavelet, ‘dmeyer’, consistently demonstrates the most favorable results. Our findings highlight the effectiveness of both the wavelet and wavelet packet transforms in accurately detecting broken bars in induction motors. This fact allows optimal monitoring strategies in industrial applications.

Publisher

MDPI AG

Reference15 articles.

1. The Importance of Manufacturing in Economic Development: Has This Changed?;Haraguchi;World Dev.,2017

2. Nandi, S., and Toliyat, H. (1999, January 3–7). Condition monitoring and fault diagnosis of electrical machines—A review. Proceedings of the Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370), Phoenix, AZ, USA.

3. Trends in Fault Diagnosis for Electrical Machines: A Review of Diagnostic Techniques;Henao;IEEE Ind. Electron. Mag.,2014

4. Application and optimization of the discrete wavelet transform for the detection of broken rotor bars in induction machines;Peris;Appl. Comput. Harmon. Anal.,2006

5. Corral Hernández, J., Antonino-Daviu, J., Martínez-Giménez, F., and Peris, A. (2015, January 17–19). Comparison of different wavelet families for broken bar detection in induction motors. Proceedings of the 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, Spain.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3