Rainbow Connection Numbers of WK-Recursive Networks and WK-Recursive Pyramids

Author:

Wang Fu-Hsing1ORCID,Hsu Cheng-Ju2

Affiliation:

1. Department of Information Management, Chinese Culture University, Taipei 11114, Taiwan

2. Department of Information Management, Chien Hsin University of Science and Technology, Taoyuan City 32097, Taiwan

Abstract

An edge coloring of a graph G results in G being rainbow connected when every pair of vertices is linked by a rainbow path. Such a path is defined as one where each edge possesses a distinct color. A rainbow coloring refers to an edge coloring that guarantees the rainbow connectedness of G. The rainbow connection number of G represents the smallest quantity of colors required to achieve rainbow connectedness under a rainbow coloring scheme. Wang and Hsu (ICICM 2019: 75–79) provided upper bounds on the size of the rainbow connection numbers in WK-recursive networks WKd,t and WK-recursive pyramids WKPd,n. In this paper, we revise their results and determine the exact values of the rainbow connection numbers of WKd,2 for d=3 and 4. The rainbow connection numbers of WKd,2 are bounded between 4 and ⌊d2⌋+2 for d>4. In addition to our previous findings, we further investigate and determine upper bounds for the size of the rainbow connection numbers of WKPd,n. This involves analyzing various aspects of the graph structure and exploring potential limitations on the rainbow connection numbers. By establishing these upper bounds, we gain deeper insights into the potential range and constraints of the rainbow connection numbers within the given context.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3