Large Span Sizes and Irregular Shapes Target Detection Methods Using Variable Convolution-Improved YOLOv8

Author:

Gao Yan1,Liu Wei2,Chui Hsiang-Chen3ORCID,Chen Xiaoming1ORCID

Affiliation:

1. School of Intergated Circuits, Dalian University of Technology, Dalian 116024, China

2. Automation Department, Lingyuan Iron and Steel Group Co., Ltd., Lingyuan 122500, China

3. School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China

Abstract

In this work, an object detection method using variable convolution-improved YOLOv8 is proposed to solve the problem of low accuracy and low efficiency in detecting spanning and irregularly shaped samples. Aiming at the problems of the irregular shape of a target, the low resolution of labeling frames, dense distribution, and the ease of overlap, a deformable convolution module is added to the original backbone network. This allows the model to deal flexibly with the problem of the insufficient perceptual field of the target corresponding to the detection point, and the situations of leakage and misdetection can be effectively improved. In order to solve the issue that small target detection is susceptible to image background and noise interference, the Sim-AM (simple parameter-free attention mechanism) module is added to the backbone network of YOLOv8, which enhances the attention to the underlying features and, thus, improves the detection accuracy of the model. More importantly, the Sim-AM module does not need to add parameters to the original network, which reduces the computation of the model. To address the problem of complex model structures that can lead to slower detection, the spatial pyramid pooling of the backbone network is replaced with focal modulation networks, which greatly simplifies the computation process. The experimental validation was carried out on the scrap steel dataset containing a large number of targets of multiple shapes and sizes. The results showed that the improved YOLOv8 network model improves the AP (average precision) by 2.1%, the mAP (mean average precision value) by 0.8%, and reduces the FPS (frames per second) by 5.4, which meets the performance requirements of real-time industrial inspection.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3