Chemoembolization for Hepatocellular Carcinoma Including Contrast Agent-Enhanced CT: Response Assessment Model on Radiomics and Artificial Intelligence

Author:

Yoon Sungjin1,Kim Youngjae2,Kim Juhyun3ORCID,Kim Yunsoo3,Kwon Ohsang3,Shin Seungkak3ORCID,Jeon Jisoo2,Choi Seungjoon1ORCID

Affiliation:

1. Department of Radiology, Gachon University College of Medicine, 21 Namdong-daero 774beon-gil, Namdong-gu, Incheon 21565, Republic of Korea

2. Department of Biomedical Engineering, Gachon University College of Medicine, 21 Namdong-daero 774beon-gil, Namdong-gu, Incheon 21565, Republic of Korea

3. Division of Gastroenterology, Department of Internal Medicine, Gachon University College of Medicine, 21 Namdong-daero 774beon-gil, Namdong-gu, IIncheon 13120, Republic of Korea

Abstract

Purpose: The aim of this study was to assess the efficacy of an artificial intelligence (AI) algorithm that uses radiomics data to assess recurrence and predict survival in hepatocellular carcinoma (HCC) treated with transarterial chemoembolization (TACE). Methods: A total of 57 patients with treatment-naïve HCC or recurrent HCC who were eligible for TACE were prospectively enrolled in this study as test data. A total of 100 patients with treatment-naïve HCC or recurrent HCC who were eligible for TACE were retrospectively acquired for training data. Radiomic features were extracted from contrast-enhanced, liver computed tomography (CT) scans obtained before and after TACE. An AI algorithm was trained using the retrospective data and validated using the prospective test data to assess treatment outcomes. Results: This study evaluated 107 radiomic features and 5 clinical characteristics as potential predictors of progression-free survival and overall survival. The C-index was 0.582 as the graph of the cumulative hazard function, predicted by the variable configuration by using 112 radiomics features. The time-dependent AUROC was 0.6 ± 0.06 (mean ± SD). Among the selected radiomics features and clinical characteristics, baseline_glszm_SizeZoneNonUniformity, baseline_ glszm_ZoneVariance and tumor size had excellent performance as predictors of HCC response to TACE with AUROC of 0.853, 0.814 and 0.827, respectively. Conclusions: A radiomics-based AI model is capable of evaluating treatment outcomes for HCC treated with TACE.

Funder

Guerbet

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3