Surface Tension Estimation of Steel above Boiling Temperature

Author:

Volpp Joerg12ORCID

Affiliation:

1. Department of Engineering Sciences and Mathematics, Luleå University of Technology, 971 87 Luleå, Sweden

2. Department of Engineering Science, University West, 461 86 Trollhattan, Sweden

Abstract

Surface tension is an important characteristic of materials. In particular at high temperatures, surface tension values are often unknown. However, for metals, these values are highly relevant in order to enable efficient industrial processing or simulation of material behavior. Plasma, electron or laser beam processes can induce such high energy inputs, which increase the metal temperatures to, and even above, boiling temperatures, e.g., during deep penetration welding or remote cutting. Unfortunately, both theoretical and experimental methods experience challenges in deriving surface tension values at high temperatures. Material models of metals have limitations in explaining complex ion interactions, and experimentally measuring temperature and surface tension at high temperatures is a challenge for methods and equipment. Therefore, surface wave analysis was conducted in this work to derive surface tension values around the boiling temperature of steel and identify trends. In addition, a simple ion interaction calculation was used to simulate the impacting parameters that define the surface tension. Since both the experimental values and simulation results indicate an increasing trend in surface tension above the boiling temperature, it is concluded that the dominating attractive forces above this temperature should increase with increasing temperature and lead to increasing surface tension forces in the surface layers of liquid metal.

Funder

Vetenskapsrådet—The Swedish Research Council

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Surface tension derivation from laser-generated keyholes;Journal of Laser Applications;2024-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3