Affiliation:
1. Department of Engineering Sciences and Mathematics, Luleå University of Technology, 971 87 Luleå, Sweden
2. Department of Engineering Science, University West, 461 86 Trollhattan, Sweden
Abstract
Surface tension is an important characteristic of materials. In particular at high temperatures, surface tension values are often unknown. However, for metals, these values are highly relevant in order to enable efficient industrial processing or simulation of material behavior. Plasma, electron or laser beam processes can induce such high energy inputs, which increase the metal temperatures to, and even above, boiling temperatures, e.g., during deep penetration welding or remote cutting. Unfortunately, both theoretical and experimental methods experience challenges in deriving surface tension values at high temperatures. Material models of metals have limitations in explaining complex ion interactions, and experimentally measuring temperature and surface tension at high temperatures is a challenge for methods and equipment. Therefore, surface wave analysis was conducted in this work to derive surface tension values around the boiling temperature of steel and identify trends. In addition, a simple ion interaction calculation was used to simulate the impacting parameters that define the surface tension. Since both the experimental values and simulation results indicate an increasing trend in surface tension above the boiling temperature, it is concluded that the dominating attractive forces above this temperature should increase with increasing temperature and lead to increasing surface tension forces in the surface layers of liquid metal.
Funder
Vetenskapsrådet—The Swedish Research Council
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献