A Self-Adaptive Reinforcement-Exploration Q-Learning Algorithm

Author:

Zhang Lieping,Tang Liu,Zhang Shenglan,Wang Zhengzhong,Shen Xianhao,Zhang Zuqiong

Abstract

Directing at various problems of the traditional Q-Learning algorithm, such as heavy repetition and disequilibrium of explorations, the reinforcement-exploration strategy was used to replace the decayed ε-greedy strategy in the traditional Q-Learning algorithm, and thus a novel self-adaptive reinforcement-exploration Q-Learning (SARE-Q) algorithm was proposed. First, the concept of behavior utility trace was introduced in the proposed algorithm, and the probability for each action to be chosen was adjusted according to the behavior utility trace, so as to improve the efficiency of exploration. Second, the attenuation process of exploration factor ε was designed into two phases, where the first phase centered on the exploration and the second one transited the focus from the exploration into utilization, and the exploration rate was dynamically adjusted according to the success rate. Finally, by establishing a list of state access times, the exploration factor of the current state is adaptively adjusted according to the number of times the state is accessed. The symmetric grid map environment was established via OpenAI Gym platform to carry out the symmetrical simulation experiments on the Q-Learning algorithm, self-adaptive Q-Learning (SA-Q) algorithm and SARE-Q algorithm. The experimental results show that the proposed algorithm has obvious advantages over the first two algorithms in the average number of turning times, average inside success rate, and number of times with the shortest planned route.

Funder

National Natural Science Foundation of China

The key laboratory of spatial information and geomatics

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3