Molecular and Clinical Characterization of CNGA3 and CNGB3 Genes in Brazilian Patients Affected with Achromatopsia

Author:

Amaral Rebeca A. S.12ORCID,Motta Fabiana L.2ORCID,Zin Olivia A.13ORCID,da Palma Mariana M.124,Rodrigues Gabriela D.1,Sallum Juliana M. F.12ORCID

Affiliation:

1. Department of Ophthamology, Federal University of São Paulo (UNIFESP), São Paulo 04023-062, Brazil

2. Instituto de Genética Ocular, São Paulo 04552-050, Brazil

3. Instituto Brasileiro de Oftalmologia (IBOL), Rio de Janeiro 22250-040, Brazil

4. Department of Surgery & Hospital Clinic of Barcelona, School of Medicine, Universitat de Barcelona, 08007 Barcelona, Spain

Abstract

Achromatopsia (ACHM) is a congenital cone photoreceptor disorder characterized by reduced visual acuity, nystagmus, photophobia, and very poor or absent color vision. Pathogenic variants in six genes encoding proteins composing the cone phototransduction cascade (CNGA3, CNGB3, PDE6C, PDE6H, GNAT2) and of the unfolded protein response (ATF6) have been related to ACHM cases, while CNGA3 and CNGB3 alone are responsible for most cases. Herein, we provide a clinical and molecular overview of 42 Brazilian patients from 38 families affected with ACHM related to biallelic pathogenic variants in the CNGA3 and CNGB3 genes. Patients’ genotype and phenotype were retrospectively evaluated. The majority of CNGA3 variants were missense, and the most prevalent CNGB3 variant was c.1148delC (p.Thr383Ilefs*13), resulting in a frameshift and premature stop codon, which is compatible with previous publications in the literature. A novel variant c.1893T>A (p.Tyr631*) in the CNGB3 gene is reported for the first time in this study. A great variability in morphologic findings was observed in our patients, although no consistent correlation with age and disease stage in OCT foveal morphology was found. The better understanding of the genetic variants landscape in the Brazilian population will help in the diagnosis of this disease.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)—Brazil

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3