New Synthetic Operon Vectors for Expressing Multiple Proteins in the Chlamydomonas reinhardtii Chloroplast

Author:

Yeon Jihye1,Miller Stephen M.1ORCID,Dejtisakdi Wipawee2

Affiliation:

1. Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA

2. Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

Abstract

Microalgae are a promising platform for generating valuable commercial products, including proteins that may not express well in more traditional cell culture systems. In the model green alga Chlamydomonas reinhardtii, transgenic proteins can be expressed from either the nuclear or chloroplast genome. Expression in the chloroplast has several advantages, but technology is not yet well developed for expressing multiple transgenic proteins simultaneously. Here, we developed new synthetic operon vectors to express multiple proteins from a single chloroplast transcription unit. We modified an existing chloroplast expression vector to contain intercistronic elements derived from cyanobacterial and tobacco operons and tested the ability of the resulting operon vectors to express two or three different proteins at a time. All operons containing two of the coding sequences (for C. reinhardtii FBP1 and atpB) expressed the products of those genes, but operons containing the other two coding sequences (C. reinhardtii FBA1 and the synthetic camelid antibody gene VHH) did not. These results expand the repertoire of intercistronic spacers that can function in the C. reinhardtii chloroplast, but they also suggest that some coding sequences do not function well in the context of synthetic operons in this alga.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3