Evaluation and Verification of a microRNA Panel Using Quadratic Discriminant Analysis for the Classification of Human Body Fluids in DNA Extracts

Author:

Rhodes Ciara12ORCID,Lewis Carolyn12,Price Kelsey1,Valentine Anaya1,Creighton Mary-Randall A.3,Boone Edward4ORCID,Seashols-Williams Sarah1ORCID

Affiliation:

1. Department of Forensic Science, Virginia Commonwealth University, P.O. Box 843079, 1015 Floyd Ave., Richmond, VA 23284-3079, USA

2. Integrative Life Sciences Program, Virginia Commonwealth University, P.O. Box 842030, 1000 West Cary St., Richmond, VA 23284-2030, USA

3. Center for Biological Data Science, Virginia Commonwealth University, P.O. Box 842030, 1015 Floyd Ave., Richmond, VA 23284-2030, USA

4. Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, P.O. Box 843083, 1015 Floyd Ave., Richmond, VA 23284-3083, USA

Abstract

There is significant interest in the use of miRNA analysis for forensic body fluid identification. Demonstrated co-extraction and detection in DNA extracts could make the use of miRNAs a more streamlined molecular body fluid identification method than other RNA-based methods. We previously reported a reverse transcription-quantitative PCR (RT-qPCR) panel of eight miRNAs that classified venous and menstrual blood, feces, urine, saliva, semen, and vaginal secretions using a quadratic discriminant analysis (QDA) model with 93% accuracy in RNA extracts. Herein, miRNA expression in DNA extracts from 50 donors of each body fluid were tested using the model. Initially, a classification rate of 87% was obtained, which increased to 92% when three additional miRNAs were added. Body fluid identification was found to be reliable across population samples of mixed ages, ethnicities, and sex, with 72–98% of the unknown samples classifying correctly. The model was then tested against compromised samples and over biological cycles, where classification accuracy varied, depending on the body fluid. In conclusion, we demonstrated the ability to classify body fluids using miRNA expression from DNA extracts, eliminating the need for RNA extraction, greatly reducing evidentiary sample consumption and processing time in forensic laboratories, but acknowledge that compromised semen and saliva samples can fail to classify properly, and mixed sample classification remains untested and may have limitations.

Funder

National Institute of Justice, Office of Justice Programs, U.S. Department of Justice to SSW

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3