The CRISPR/Cas System: A Customizable Toolbox for Molecular Detection

Author:

He Yuxuan1,Yan Wei1,Long Likun1,Dong Liming1,Ma Yue1,Li Congcong1,Xie Yanbo1,Liu Na1,Xing Zhenjuan1,Xia Wei1,Li Feiwu1

Affiliation:

1. Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) are promising molecular diagnostic tools for rapidly and precisely elucidating the structure and function of genomes due to their high specificity, programmability, and multi-system compatibility in nucleic acid recognition. Multiple parameters limit the ability of a CRISPR/Cas system to detect DNA or RNA. Consequently, it must be used in conjunction with other nucleic acid amplification techniques or signal detection techniques, and the reaction components and reaction conditions should be modified and optimized to maximize the detection performance of the CRISPR/Cas system against various targets. As the field continues to develop, CRISPR/Cas systems have the potential to become an ultra-sensitive, convenient, and accurate biosensing platform for the detection of specific target sequences. The design of a molecular detection platform employing the CRISPR/Cas system is asserted on three primary strategies: (1) Performance optimization of the CRISPR/Cas system; (2) enhancement of the detection signal and its interpretation; and (3) compatibility with multiple reaction systems. This article focuses on the molecular characteristics and application value of the CRISPR/Cas system and reviews recent research progress and development direction from the perspectives of principle, performance, and method development challenges to provide a theoretical foundation for the development and application of the CRISPR/CAS system in molecular detection technology.

Funder

High-level Talents Research Start-up Foundation of Jilin Agricultural Technological Innovation Project

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3