Abstract
Psychrophilic yeasts are distributed widely on Earth and have developed adaptation strategies to overcome the effect of low temperatures. They can adapt to low temperatures better than bacteriophyta. However, to date, their whole-genome sequences have been limited to the analysis of single strains of psychrophilic yeasts, which cannot be used to reveal their possible psychrophilic mechanisms to adapt to low temperatures accurately and comprehensively. This study aimed to compare different sources of psychrophilic yeasts at the genomic level and investigate their cold-adaptability mechanisms in a comprehensive manner. Nine genomes of known psychrophilic yeasts and three representative genomes of mesophilic yeasts were collected and annotated. Comparative genomic analysis was performed to compare the differences in their signaling pathways, metabolic regulations, evolution, and psychrophilic genes. The results showed that fatty acid desaturase coding genes are universal and diverse in psychophilic yeasts, and different numbers of these genes exist (delta 6, delta 9, delta 12, and delta 15) in the genomes of various psychrophilic yeasts. Therefore, they can synthesize polyunsaturated fatty acids (PUFAs) in a variety of ways and may be able to enhance the fluidity of cell membranes at low temperatures by synthesizing C18:3 or C18:4 PUFAs, thereby ensuring their ability to adapt to low-temperature environments. However, mesophilic yeasts have lost most of these genes. In this study, psychrophilic yeasts could adapt to low temperatures primarily by synthesizing PUFAs and diverse antifreeze proteins. A comparison of more psychrophilic yeasts’ genomes will be useful for the study of their psychrophilic mechanisms, given the presence of additional potential psychrophilic-related genes in the genomes of psychrophilic yeasts. This study provides a reference for the study of the psychrophilic mechanisms of psychrophilic yeasts.
Funder
Doctoral Foundation of Heze University
Subject
Genetics (clinical),Genetics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献