Genome Identification of the Tea Plant (Camellia sinensis) ASMT Gene Family and Its Expression Analysis under Abiotic Stress

Author:

Xu Fangfang1ORCID,Liu Wenxiang1,Wang Hui1,Alam Pravej2ORCID,Zheng Wei1,Faizan Mohammad3ORCID

Affiliation:

1. College of Forestry, Xinyang Agriculture and Forestry University, Xinyang 464000, China

2. Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia

3. Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India

Abstract

The tea plant (Camellia sinensis (L.) O. Ktze) is an important cash crop grown worldwide. It is often subjected to environmental stresses that influence the quality and yield of its leaves. Acetylserotonin-O-methyltransferase (ASMT) is a key enzyme in melatonin biosynthesis, and it plays a critical role in plant stress responses. In this paper, a total of 20 ASMT genes were identified in tea plants and classified into three subfamilies based on a phylogenetic clustering analysis. The genes were unevenly distributed on seven chromosomes; two pairs of genes showed fragment duplication. A gene sequence analysis showed that the structures of the ASMT genes in the tea plants were highly conserved and that the gene structures and motif distributions slightly differed among the different subfamily members. A transcriptome analysis showed that most CsASMT genes did not respond to drought and cold stresses, and a qRT-PCR analysis showed that CsASMT08, CsASMT09, CsASMT10, and CsASMT20 significantly responded to drought and low-temperature stresses; in particular, CsASMT08 and CsASMT10 were highly expressed under low-temperature stress and negatively regulated in response to drought stress. A combined analysis revealed that CsASMT08 and CsASMT10 were highly expressed and that their expressions differed before and after treatment, which indicates that they are potential regulators of abiotic stress resistance in the tea plant. Our results can facilitate further studies on the functional properties of CsASMT genes in melatonin synthesis and abiotic stress in the tea plant.

Funder

Key Scientific Research Project of Henan Province Colleges and Universities

Xinyang Agriculture and Forestry University School Youth Fund Project

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3