Transcriptomic Analysis and Salt-Tolerance Gene Mining during Rice Germination

Author:

Han Xiao1ORCID,Wu Zhihai1,Liu Fangbiao1,Wang Yu1,Wei Xiaoshuang1,Tian Ping1,Ling Fenglou1

Affiliation:

1. Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China

Abstract

Salt stress is an important environmental factor affecting crop growth and development. One of the important ways to improve the salt tolerance of rice is to identify new salt-tolerance genes, reveal possible mechanisms, and apply them to the creation of new germplasm and the breeding of new varieties. In this study, the salt-sensitive japonica variety Tong 35 (T35) and salt-tolerant japonica variety Ji Nongda 709 (JND709) were used. Salt stress treatment with a 150 mmol/L NaCl solution (the control group was tested without salt stress treatment simultaneously) was continued until the test material was collected after the rice germination period. Twelve cDNA libraries were constructed, and 5 comparator groups were established for transcriptome sequencing. On average, 9.57G of raw sequencing data were generated per sample, with alignment to the reference genome above 96.88% and alignment to guanine-cytosine (GC) content above 53.86%. A total of 16,829 differentially expressed genes were present in the five comparison groups, of which 2390 genes were specifically expressed in T35 (category 1), 3306 genes were specifically expressed in JND709 (category 2), and 1708 genes were differentially expressed in both breeds (category 3). Differentially expressed genes were subjected to gene ontology (GO), functional enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, which revealed that these genes belonged to three main classes: molecular function, cellular components, and biological processes. KEGG pathway analysis showed that the significantly enriched pathways for these differentially expressed genes included phenylpropane biosynthesis, phytohormone signaling, and the interaction of plants with pathogens. In this study, we provided a reference for studying the molecular mechanism underlying salt tolerance during germination.

Funder

Fenglou Ling’s Changchun Science and Technology Development Plan Project

the Jilin Science and Technology Development Plan Project

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3