Performance Evaluation of the Electro-Fenton Process for Distillery Wastewater Treatment

Author:

Minnalkodi Senguttuvan Keerthana Rani1ORCID,Sellappa Kanmani1ORCID,Kuppusamy Saranya1

Affiliation:

1. Centre for Environmental Engineering, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai 600025, Tamil Nadu, India

Abstract

A fair amount of India’s gross domestic product is contributed by distilleries, which are considered the backbone industries of India. Distilleries indeed play key roles in India’s exports. Distillery wastewater is recognized as one of the recalcitrant wastewaters, containing extremely high organic loading and having an adverse impact when released into the environment. The aim of the present study was to optimize the conditions required for attaining improved COD removal efficiency in distillery wastewater through an electro-Fenton (EF) process. The effect of various operating parameters, viz. H2O2 dosage (555–2220 mg L−1), spacing between the iron electrodes (2–6 cm), electrode dipping area (35–65 cm2), initial pH (2–9), and constant voltage supply (5–15 V), were investigated by carrying out the EF process in batch mode. As a result of the EF study, COD removal efficiency of 79.5% for an initial COD of 5500–6000 mg L−1 was achieved for the distillery wastewater under the condition of 1665 mg L−1 H2O2, 2.5 cm of spacing between the electrodes, 55 cm2 of electrode dipping area, pH 3, and constant voltage supply of 5 V. In the same study, the kinetics of the process was also investigated, and it obeyed the pseudo-first-order reaction. The EF process effectively degrades complex organic compounds in distillery wastewater into simpler, potentially less toxic substances, as demonstrated by gas chromatography–mass spectrometry (GC-MS) analysis and pathway elucidation. The central composite design (CCD) of the response surface methodology (RSM) model was used to optimize the COD removal in distillery wastewater through the EF process. In line with the batch experimental results, RSM projections also indicated that the optimum conditions required for attaining a maximum of 70.8% COD removal efficiency in distillery wastewater are found to be 1402 mg L−1 H2O2 dosage, 3 cm electrode spacing, 60 cm2 dipping area, 5 V voltage, and pH 2.18. The research data supported the conclusion that the EF process is feasible for distillery wastewater treatment, which preferably can be applied extensively.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3