Investigating the Individual Performances of Coupled Superconducting Transmon Qubits

Author:

Ahmad Halima Giovanna12ORCID,Jordan Caleb3,van den Boogaart Roald4,Waardenburg Daan4,Zachariadis Christos4,Mastrovito Pasquale1,Georgiev Asen Lyubenov1ORCID,Montemurro Domenico12ORCID,Pepe Giovanni Piero12ORCID,Arthers Marten4,Bruno Alessandro4,Tafuri Francesco15ORCID,Mukhanov Oleg3,Arzeo Marco6ORCID,Massarotti Davide27ORCID

Affiliation:

1. Dipartimento di Fisica “Ettore Pancini”, Università degli Studi di Napoli “Federico II”, c/o Complesso Monte Sant’Angelo, Via Cinthia, I-80126 Napoli, Italy

2. Consiglio Nazionale delle Ricerche—SuPerconducting and Other INnovative Materials and Devices Institute (SPIN), c/o Complesso Monte Sant’Angelo, Via Cinthia, I-80126 Napoli, Italy

3. SEEQC, Inc., 150 Clearbrook Rd Suite 170, Elmsford, NY 10523, USA

4. QuantWare, Elektronicaweg 10, 2628 XG Delft, The Netherlands

5. Consiglio Nazionale delle Ricerche-Istituto Nazionale di Ottica (CNR-INO), Largo Enrico Fermi 6, I-50125 Florence, Italy

6. SEEQC-EU, Strada Vicinale Cupa Cinthia, 21, I-80126 Napoli, Italy

7. Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, I-80125 Napoli, Italy

Abstract

The strong requirement for high-performing quantum computing led to intensive research on novel quantum platforms in the last decades. The circuital nature of Josephson-based quantum superconducting systems powerfully supports massive circuital freedom, which allowed for the implementation of a wide range of qubit designs, and an easy interface with the quantum processing unit. However, this unavoidably introduces a coupling with the environment, and thus to extra decoherence sources. Moreover, at the time of writing, control and readout protocols mainly use analogue microwave electronics, which limit the otherwise reasonable scalability in superconducting quantum circuits. Within the future perspective to improve scalability by integrating novel control energy-efficient superconducting electronics at the quantum stage in a multi-chip module, we report on an all-microwave characterization of a planar two-transmon qubits device, which involves state-of-the-art control pulses optimization. We demonstrate that the single-qubit average gate fidelity is mainly limited by the gate pulse duration and the quality of the optimization, and thus does not preclude the integration in novel hybrid quantum-classical superconducting devices.

Publisher

MDPI AG

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3