Affiliation:
1. National Institute of Materials Physics, 405A Atomistilor Str., 077125 Magurele, Romania
2. Department of Physics “E.R. Caianiello”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
Abstract
Among various “families” of iron-based superconductors, the quite recently discovered AeAFe4As4 (where Ae is an alkali-earth metal and A is an alkali metal) has high critical current density, a very high upper critical field, and a low anisotropy, and has recently received much interest for the possibility of high magnetic field applications at the liquid hydrogen temperature. We have performed DC magnetization relaxation and frequency-dependent AC susceptibility measurements on high-quality single crystals of CaKFe4As4 with the aim of determining the pinning potential U*. The temperature dependence of U* displays a clear crossover between elastic creep and plastic creep. At temperatures around 27–28 K, U* has a very high value, up to 1200 K, resulting in an infinitesimally small probability of thermally activated flux jumps. From the dependence of the normalized pinning potential on irreversible magnetization, we have determined the creep exponents in the two creep regimes, which are in complete agreement with theoretical models. The estimation of the pinning potential from multifrequency AC susceptibility measurements was possible only near the critical temperature due to equipment limitations, and the resulting value is very close to the one that resulted from the magnetization relaxation data. Magnetic hysteresis loops revealed a second magnetization peak and very high values of the critical current density.
Funder
National Institute of Materials Physics
Romanian Ministry of Research, Innovation and Digitalization
EU COST Actions
Subject
Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献