Mapping the Catchment Area of Park and Ride Facilities within Urban Environments

Author:

Ortega JairoORCID,Tóth János,Péter Tamás

Abstract

A Park and Ride (P & R) system is a set of facilities located throughout an urban area that can serve as transfer points for travelers that would like to utilize their private vehicles for one part of their journey and a more sustainable transport mode, such as public transport, for another part of the same journey. The catchment area of the facilities is identified as a fundamental element for planning a P & R system. It can be assumed to be accurately represented by several geometric shapes, such as a circle or a parabola. In that regard, a method denominated as the parabola method can be used to visualize those geometric shapes on digital maps of an urban environment. It can be implemented as a software program that integrates the variables that represent the elements of the P & R system as well as the set of equations that are used in a geographic information system (GIS) software. A significant aspect of how the parabola method is applied is its orientation as a shape, which is traditionally configured in respect to the area of major business activity or central business districts (CBDs). In fact, the research presented in this article aims to provide a new approach to the parabola’s orientation to study the P & R system’s catchment area by proposing the parabola’s orientation according to the primary access that potential users used to reach the facility. A case study that portrays the application of our method is given that is focused on the medium-sized city of Cuenca, Ecuador, where we determine which approach to the parabola’s orientation is the most suitable. In conclusion, the second approach proposed in this research reflects in a more realistic form the operation of the catchment area of the P & R system, considering a better distribution of the coverage area of the P & R system in the urban environment.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3