School Commuting Mode Shift: A Scenario Analysis for Active School Commuting Using GIS and Online Map API

Author:

Liu Anqi,Kelobonye KeoneORCID,Zhou Zhenqi,Xu Qiuxia,Xu ZhenORCID,Han Lingyun

Abstract

Active school commuting provides a convenient opportunity to promote physical activity for children, while also reducing car dependence and its associated environmental impacts. School–home distance is a critical factor in school commuting mode choice, and longer distances have been proven to increase the likelihood of driving. In this study, we combine open-access data acquired from Baidu Map application programming interface (API) with GIS (Geographic Information System) technology to estimate the extent to which the present school–home distances can be reduced for public middle schools in Jianye District, Nanjing, China. Based on the policies for school planning and catchment allocation, we conduct a scenario analysis of school catchment reassignment whereby residences are reassigned to the nearest school. The results show that, despite the government’s ‘attending nearby school’ policy, some students in the study area are subjected to excess school–home distances, and the overall journey-to-school trips can be reduced by 20.07%, accounting for 330.8 km. This excess distance indicates the extent to which the need for vehicle travel can be potentially reduced in favor of active school commuting and a low-carbon lifestyle. Therefore, these findings provide important insights into school siting and school catchment assignment policies seeking to facilitate active school commuting, achieve educational spatial equity and reduce car dependence.

Funder

Humanity and Social Science Foundation of Ministry of Education

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3