Are the Effects of the Cholera Toxin and Isoproterenol on Human Keratinocytes’ Proliferative Potential Dependent on Whether They Are Co-Cultured with Human or Murine Fibroblast Feeder Layers?

Author:

Cortez Ghio Sergio,Cantin-Warren Laurence,Guignard Rina,Larouche Danielle,Germain LucieORCID

Abstract

Human keratinocyte culture has provided the means to treat burns, wounds and skin pathologies. To date, to efficiently culture keratinocytes, cells are cultured on an irradiated feeder layer (iFL), either comprising human (iHFL) or murine (i3T3FL) fibroblasts, and the culture medium is supplemented with a cyclic adenosine monophosphate (cAMP) accumulation inducing agent such as isoproterenol (ISO) or cholera toxin (CT). Previous studies have characterized how the feeder layer type and the cAMP inducer type influence epithelial cells’ phenotype independently from one another, but it is still unknown if an optimal combination of feeder layer and cAMP inducer types exists. We used sophisticated statistical models to search for a synergetic effect of feeder layer and cAMP inducer types on human keratinocytes’ proliferative potential. Our data suggests that, when culturing human keratinocytes, using iHFL over i3T3FL increases population doublings and colony-forming efficiency through signaling pathways involving Ak mouse strain thymoma (Akt, also known as protein kinase B) isoforms 1 to 3, signal transducer and activator of transcription 5 (STAT5), p53, and adenosine monophosphate activated protein kinase α1 (AMPKα1). Both tested cAMP inducers ISO and CT yielded comparable outcomes. However, no significant synergy between feeder layer and cAMP inducer types was detected. We conclude that, to promote human keratinocyte growth in the early passages of culture, co-culturing them with a human feeder layer is preferable to a murine feeder layer.

Funder

Canadian Institutes of Health Research

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3