Calcination of Clay Raw Materials in a Fluidized Bed

Author:

Kaczyńska KatarzynaORCID,Kaczyński Konrad,Pełka Piotr

Abstract

Clay raw materials are diverse in terms of their mineral composition, as well as the content of colouring oxides and their physical properties. Determining the suitability of raw materials for various purposes requires comprehensive studies on their properties, as well as their appropriate correction, which is possible through the use of appropriate modification techniques. One of the most commonly used technologies for the enrichment of clay raw materials is to subject them to high temperatures, which, depending on the temperature regime used in the technological process, may cause the decomposition and removal of some addditional components (e.g., carbonates), as well as the removal of water and dehydroxylation of clay minerals, reversible structural changes, and the complete and permanent reconstruction of the mineral phases. This paper presents a new application for fluidization technology in the calcination of clay raw materials. The results of the experiment show that the fluidization method is competitive compared to the technologies that have been used so far, as a result of, inter alia, the much shorter time period required to carry out the calcination process and, consequently, the much lower energy expenditure, the high efficiency of burning coal, and the lower CO2 emissions resulting from the mixing taking place in the reactor.

Funder

Research project orderer

Publisher

MDPI AG

Subject

General Materials Science

Reference25 articles.

1. Accompanying minerals in lignite deposits;Ratajczak,2017

2. Mineralogical criterion as a part of suitability assessment of some polish raw clay for hydro-insulating barriers construction;Ratajczak;Górnictwo Odkryw.,2016

3. Enhanced Removal of Sulfonated Lignite from Oil Wastewater with Multidimensional MgAl-LDH Nanoparticles

4. Fabrication and properties of freeze-cast mullite foams derived from coal-series kaolin

5. Structural characterization of organo-montmorillonites prepared from a series of primary alkylamines salts: Mid-IR and near-IR study

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3