Comprehensive Analysis of Multi-Objective Optimization Algorithms for Sustainable Hybrid Electric Vehicle Charging Systems

Author:

Alshammari Nahar F.1ORCID,Samy Mohamed Mahmoud2ORCID,Barakat Shimaa2

Affiliation:

1. Department of Electrical Engineering, Faculty of Engineering, Jouf University, Sakaka 72388, Saudi Arabia

2. Department of Electrical Engineering, Faculty of Engineering, Beni-Suef University, Beni-Suef 2722165, Egypt

Abstract

This study presents a multi-objective optimization approach for designing hybrid renewable energy systems for electric vehicle (EV) charging stations that considers both economic and reliability factors as well as seasonal variations in energy production and consumption. Four algorithms, MOPSO, NSGA-II, NSGA-III, and MOEA/D, were evaluated in terms of their convergence, diversity, efficiency, and robustness. Unlike previous studies that focused on single-objective optimization or ignored seasonal variations, our approach results in a more comprehensive and sustainable design for EV charging systems. The proposed system includes a 223-kW photovoltaic system, an 80-kW wind turbine, and seven Lithium-Ion battery banks, achieving a total net present cost of USD 564,846, a levelized cost of electricity of 0.2521 USD/kWh, and a loss of power supply probability of 1.21%. NSGA-II outperforms the other algorithms in terms of convergence and diversity, while NSGA-III is the most efficient, and MOEA/D has the highest robustness. The findings contribute to the development of efficient and reliable renewable energy systems for urban areas, emphasizing the importance of considering both economic and reliability factors in the design process. Our study represents a significant advance in the field of hybrid renewable energy systems for EV charging stations.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3