Hydraulic Rock Drill Fault Classification Using X−Vectors

Author:

Ling Huixuan12ORCID,Gao Tian2,Gong Tao2,Wu Jiangzhao2,Zou Liang1ORCID

Affiliation:

1. School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. iFLYTEK Research, iFLYTEK Co., Ltd., Hefei 230088, China

Abstract

Hydraulic rock drills are widely used in drilling, mining, construction, and engineering applications. They typically operate in harsh environments with high humidity, large temperature differences, and vibration. Under the influence of environmental noise and operational patterns, the distributions of data collected by sensors for different operators and equipment differ significantly, which leads to difficulty in fault classification for hydraulic rock drills. Therefore, an intelligent and robust fault classification method is highly desired. In this paper, we propose a fault classification technique for hydraulic rock drills based on deep learning. First, considering the strong robustness of x−vectors to the features extracted from the time series, we employ an end−to−end fault classification model based on x−vectors to realize the joint optimization of feature extraction and classification. Second, the overlapping data clipping method is applied during the training process, which further improves the robustness of our model. Finally, the focal loss is used to focus on difficult samples, which improves their classification accuracy. The proposed method obtains an accuracy of 99.92%, demonstrating its potential for hydraulic rock drill fault classification.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3