New Probabilistic, Dynamic Multi-Method Ensembles for Optimization Based on the CRO-SL

Author:

Pérez-Aracil Jorge1ORCID,Camacho-Gómez Carlos2ORCID,Lorente-Ramos Eugenio1ORCID,Marina Cosmin M.1ORCID,Cornejo-Bueno Laura M.1ORCID,Salcedo-Sanz Sancho1ORCID

Affiliation:

1. Department of Signal Processing and Communications, Universidad de Alcalá, 28805 Alcalá de Henares, Spain

2. Department of Computer Systems Engineering, Universidad Politécnica de Madrid, 28031 Madrid, Spain

Abstract

In this paper, new probabilistic and dynamic (adaptive) strategies for creating multi-method ensembles based on the coral reef optimization with substrate layers (CRO-SL) algorithm are proposed. CRO-SL is an evolutionary-based ensemble approach that is able to combine different search procedures for a single population. In this work, two different probabilistic strategies to improve the algorithm are analyzed. First, the probabilistic CRO-SL (PCRO-SL) is presented, which substitutes the substrates in the CRO-SL population with tags associated with each individual. Each tag represents a different operator which will modify the individual in the reproduction phase. In each generation of the algorithm, the tags are randomly assigned to the individuals with similar probabilities, obtaining this way an ensemble that sees more intense changes with the application of different operators to a given individual than CRO-SL. Second, the dynamic probabilistic CRO-SL (DPCRO-SL) is presented, in which the probability of tag assignment is modified during the evolution of the algorithm, depending on the quality of the solutions generated in each substrate. Thus, the best substrates in the search process will be assigned higher probabilities than those which showed worse performance during the search. The performances of the proposed probabilistic and dynamic ensembles were tested for different optimization problems, including benchmark functions and a real application of wind-turbine-layout optimization, comparing the results obtained with those of existing algorithms in the literature.

Funder

Spanish Ministry of Science and Innovation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3