The Synthesis of Ag/TiO2 via the DC Magnetron Sputtering Method and Its Application in the Photocatalytic Degradation of Methyl Orange in Na2SO4 Solution

Author:

Sun Li1ORCID,Que Zhuoqun1,Ruan Ting1,Yuan Zhigang1,Gong Wenbang1,Mei Shunqi1,Chen Zhen1,Liu Ying2

Affiliation:

1. Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430073, China

2. Test Center, Wuhan Textile University, Wuhan 430073, China

Abstract

TiO2 and TiO2 films modified with Ag (Ag/TiO2) were prepared via the DC magnetron sputtering method and the degree of modification was controlled via the sputtering power and time of Ag. The microstructures and properties of these films were characterized using field emission scanning electron microscopy, X-ray diffractometry, ultraviolet–visible diffuse reflectance spectrometry, atomic force microscopy, and X-ray photoelectron spectroscopy (XPS). The results show that the prepared films have an anatase structure. Compared with pure TiO2, Ag deposition can improve the utilization of light. The three-dimensional images of Ag/TiO2 clearly show that with the increase in Ag sputtering power and sputtering time, Ag particles on the surface of the film gradually increase, and the structure of the film is relatively dense. The photocatalytic effect of Ag/TiO2 films is the best when the Ag sputtering power is 5 W and the sputtering time is 50 s. Under high-pressure mercury lamp irradiation, the photocatalytic degradation rate of methyl orange (MO) in pure MO solution with Ag/TiO2-5 W-50 s can reach 100% within 55 min, whereas that in MO-Na2SO4 mixed solution can reach 99.55% within 65 min. The results suggest that the presence of Na2SO4 in MO solution can inhibit the degradation of MO using Ag/TiO2, the result of XPS suggests that Na2SO4 accelerates the oxidation of Ag, which may lead to an increase in the recombination rate of photogenerated electron–hole pairs and a decrease in the degradation rate. During the process of recycling photocatalysts, the degradation rate of MO was apparently reduced. A possible reason is that the Ag particles have been oxidized and products of photocatalytic degradation are on the surface of the photocatalyst. The photocatalytic degradation mechanism was studied.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3