Multi-Object Pedestrian Tracking Using Improved YOLOv8 and OC-SORT

Author:

Xiao Xin1,Feng Xinlong1

Affiliation:

1. College of Mathematics and Systems Science, Xinjiang University, Urumqi 830046, China

Abstract

Multi-object pedestrian tracking plays a crucial role in autonomous driving systems, enabling accurate perception of the surrounding environment. In this paper, we propose a comprehensive approach for pedestrian tracking, combining the improved YOLOv8 object detection algorithm with the OC-SORT tracking algorithm. First, we train the improved YOLOv8 model on the Crowdhuman dataset for accurate pedestrian detection. The integration of advanced techniques such as softNMS, GhostConv, and C3Ghost Modules results in a remarkable precision increase of 3.38% and an mAP@0.5:0.95 increase of 3.07%. Furthermore, we achieve a significant reduction of 39.98% in parameters, leading to a 37.1% reduction in model size. These improvements contribute to more efficient and lightweight pedestrian detection. Next, we apply our enhanced YOLOv8 model for pedestrian tracking on the MOT17 and MOT20 datasets. On the MOT17 dataset, we achieve outstanding results with the highest HOTA score reaching 49.92% and the highest MOTA score reaching 56.55%. Similarly, on the MOT20 dataset, our approach demonstrates exceptional performance, achieving a peak HOTA score of 48.326% and a peak MOTA score of 61.077%. These results validate the effectiveness of our approach in challenging real-world tracking scenarios.

Funder

Natural Science Foundation of China

Natural Science Foundation of Xinjiang Province, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference36 articles.

1. Evaluating multiple object tracking performance: The clear mot metrics;Bernardin;Eurasip J. Image Video Process.,2008

2. Multi-Object Tracking and Segmentation via Neural Message Passing;Cetintas;Int. J. Comput. Vis.,2022

3. Mean shift, mode seeking, and clustering;Cheng;IEEE Trans. Pattern Anal. Mach. Intell.,1995

4. Deep learning in video multi-object tracking: A survey;Ciaparrone;Neurocomputing,2020

5. Dendorfer, P., Rezatofighi, H., Milan, A., Shi, J., Cremers, D., Reid, I., Roth, S., Schindler, K., and Leal-Taixé, L. (2020). Mot20: A benchmark for multi object tracking in crowded scenes. arXiv.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Lightweight YOLOv8 Model for Apple Leaf Disease Detection;Applied Sciences;2024-08-01

2. Research on Steel Surface Defect Detection Algorithm Based on Improved YOLOv8n;Journal of Physics: Conference Series;2024-08-01

3. Enhanced Detection of Maize Leaf Blight in Dynamic Field Conditions Using Modified YOLOv9;2024 IEEE Space, Aerospace and Defence Conference (SPACE);2024-07-22

4. U-GMo: Individual Clip Detection from a Graduation Ceremony Video;2024 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC);2024-07-02

5. ARAware: Assisting Visually Impaired People with Real-Time Critical Moving Object Identification;Sensors;2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3