Using High-Spatiotemporal Thermal Satellite ET Retrievals for Operational Water Use and Stress Monitoring in a California Vineyard

Author:

Knipper ,Kustas ,Anderson ,Alsina ,Hain ,Alfieri ,Prueger ,Gao ,McKee ,Sanchez

Abstract

In viticulture, deficit irrigation strategies are often implemented to control vine canopy growth and to impose stress at critical stages of vine growth to improve wine grape quality. To support deficit irrigation scheduling, remote sensing technologies can be employed in the mapping of evapotranspiration (ET) at the field to sub-field scales, quantifying time-varying vineyard water requirements and actual water use. In the current study, we investigate the utility of ET maps derived from thermal infrared satellite imagery over a vineyard in the Central Valley of California equipped with a variable rate drip irrigation (VRDI) system which enables differential water applications at the 30 × 30 m scale. To support irrigation management at that scale, we utilized a thermal-based multi-sensor data fusion approach to generate weekly total actual ET (ETa) estimates at 30 m spatial resolution, coinciding with the resolution of the Landsat reflectance bands. Crop water requirements (ETc) were defined with a vegetative index (VI)-based approach. To test capacity to capture stress signals, the vineyard was sub-divided into four blocks with different irrigation management strategies and goals, inducing varying degrees of stress during the growing season. Results indicate derived weekly total ET from the thermal-based data fusion approach match well with observations. The thermal-based method was also able to capture the spatial heterogeneity in ET over the vineyard due to a water stress event imposed on two of the four vineyard blocks. This transient stress event was not reflected in the VI-based ETc estimate, highlighting the value of thermal band imaging. While the data fusion system provided valuable information, latency in current satellite data availability, particularly from Landsat, impacts operational applications over the course of a growing season.

Funder

NASA Applied Sciences - Water Resources Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3