Abstract
In this manuscript, the synchronization of four-dimensional (4D) chaotic systems with uncertain parameters using a self-evolving recurrent interval type-2 Petri cerebellar model articulation controller is studied. The design of the synchronization control system is comprised of a recurrent interval type-2 Petri cerebellar model articulation controller and a fuzzy compensation controller. The proposed network structure can automatically generate new rules or delete unnecessary rules based on the self-evolving algorithm. Furthermore, the gradient-descent method is applied to adjust the proposed network parameters. Through Lyapunov stability analysis, bounded system stability is guaranteed. Finally, the effectiveness of the proposed controller is illustrated using numerical simulations of 4D chaotic systems.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献