Acoustic Scene Classification Using Efficient Summary Statistics and Multiple Spectro-Temporal Descriptor Fusion

Author:

Ye Jiaxing,Kobayashi Takumi,Toyama Nobuyuki,Tsuda HiroshiORCID,Murakawa Masahiro

Abstract

This paper presents a novel approach for acoustic scene classification based on efficient acoustic feature extraction using spectro-temporal descriptors fusion. Grounded on the finding in neuroscience—“auditory system summarizes the temporal details of sounds using time-averaged statistics to understand acoustic scenes”, we devise an efficient computational framework for sound scene classification by using multipe time-frequency descriptors fusion with discriminant information enhancement. To characterize rich information of sound, i.e., local structures on the time-frequency plane, we adopt 2-dimensional local descriptors. A more critical issue raised in how to logically ‘summarize’ those local details into a compact feature vector for scene classification. Although ‘time-averaged statistics’ is suggested by the psychological investigation, directly computing time average of local acoustic features is not a logical way, since arithmetic mean is vulnerable to extreme values which are anticipated to be generated by interference sounds which are irrelevant to the scene category. To tackle this problem, we develop time-frame weighting approach to enhance sound textures as well as to suppress scene-irrelevant events. Subsequently, robust acoustic feature for scene classification can be efficiently characterized. The proposed method had been validated by using Rouen dataset which consists of 19 acoustic scene categories with 3029 real samples. Extensive results demonstrated the effectiveness of the proposed scheme.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3