How Big Is an Error in the Analytical Calculation of Annular Fin Efficiency?

Author:

Bošnjaković MladenORCID,Muhič SimonORCID,Čikić Ante,Živić Marija

Abstract

An important role in the dimensioning of heat exchange surfaces with an annular fin is the fin efficiency. The fin efficiency is usually calculated using analytical expressions developed in the last century. However, these expressions are derived with certain assumptions and simplifications that involve a certain error in the calculation. The purpose of this paper is to determine the size of the error due to the assumptions and simplifications made when performing the analytical expression and to present what has the greatest impact on the amount of error, and give a recommendation on how to reduce that error. In order to determine the error, but also to gain a more detailed insight into the physics of heat exchange processes on the fin surface, computational fluid dynamics was applied to the original definition of fin efficiency. This means that a numerical simulation was performed for the actual fin material and for the ideal fin material with infinite thermal conductivity for the selected fin geometry and Re numbers from 2000 to 18,000. The results show that fin efficiency determined by numerical simulations is greater by up to 12.3% than the efficiency calculated analytically. The greatest impact on the amount of error is the assumption of the same temperature of the fin base surface and the outer tube surface and the assumption of equal heat transfer coefficient on the entire fin surface area. Using a newly recommended expression for the equivalent length of the fin tip, it would be possible to calculate the fin efficiency more precisely and thus the average heat transfer coefficient on the fin surface area, which leads to a more accurate dimensioning of the heat exchanger.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference22 articles.

1. Mathematical equations for heat conduction in the fins of air cooled engines;Harper;NACA R,1922

2. Heat transfer through an annular disk or fin of uniform thickness;Murray;Trans. ASME J. Appl. Mech.,1938

3. Efficiency of extended surface;Gardner;Trans. ASME,1945

4. Numerical investigation for a hyperbolic annular fin with temperature dependent thermal conductivity

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3