Investigation on Mechanism of Tetracycline Removal from Wastewater by Sinusoidal Alternating Electro-Fenton Technique

Author:

Zhou Yihui,Hu Bonian,Zhuang Xiaojie,Qiu Jinxian,Xu Tao,Zeng Muping,He Xi,Yu Gang

Abstract

Sinusoidal alternating electro-Fenton (SAEF) is a new type of advanced electrochemical oxidation technology for the treatment of refractory organic wastewater. In this research, the removal performance and degradation mechanism of tetracycline (TC) were investigated, and the optimal operation parameters were determined. Scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectrometer (FTIR) were used to characterize the morphology, elemental composition, crystal structure, function groups of sludge produced by SAEF. UV-visible spectroscopy (UV) and liquid chromatograph-mass spectrometer (LC-MS/MS) were employed to determine the concentration of organic matter, middle products of decomposed organics in the SAEF process, respectively. The results showed that the removal rates of TC, chemical oxygen demand (COD), electric energy consumption (EEC) and the amount of produced sludge (Ws) are 94.87%, 82.42%, 1.383 kWh⋅m−3 and 0.1833 kg⋅m−3 by SAEF, respectively, under the optimal conditions (pH = 3.0, conductivity (κ) = 1075 μS⋅cm−1, current density (j) = 0.694 mA⋅cm−2, initial c (TC) = 100 mg·dm−3, c [30%H2O2] = 1.17 cm3⋅dm−3, frequency (f) = 50 Hz, t = 120 min). Compared with pure direct electro-Fenton (DEF) or sinusoidal alternating current coagulation (SACC), SAEF was a highly effective method with low-cost for the treatment of TC wastewater. It was found that the conjugated structure of TC was destroyed to generate intermediate products, and then most of them was gradually mineralized into inorganic materials in the SAEF process.

Funder

National Natural Science Foundations of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3