Climbing the Effluent Filtration Tree: Modelling, Mechanisms & Applications—A Monograph

Author:

Adin AvnerORCID

Abstract

Particle filtration is a major building block in effluent treatment facilities for water reuse in agriculture, industry, and the community. Yet, its incorporation in modern hybrid treatment systems still lacks basic know-how for process optimization. This paper aims to provide a profound understanding of particle filtration vis-à-vis its various reuse applications. The methodology used follows a road map depicted as a growing tree, representing the author’s research from roots to top: roots—basic modeling, mechanisms; tree trunk—filter design approach for reuse; branches—enhanced particle removal; and tree crown—pretreatment, bioparticle, and nanoparticle removal. Contact deep-bed filtration process optimization, algorithms for economically optimal filter design, tertiary filtration and membrane pretreatment, and related energy issues are being discussed. Some of the conclusions are that pilot plant planning should be primarily derived from particle surface interactions with filter media, based on measurements of mineral particle or bioparticle size, shape, and physicochemical characteristics, and applying attachment-detachment models. Filter design optimization would comprise of selecting efficient water quality processes first, followed by economic optimization for final design parameters. A holistic approach in the design of filtration facilities, standing alone or incorporated in hybrid systems, is also considered.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference46 articles.

1. Water Demand Management: The Mediterranean Experience,2012

2. Global drought trends under 1.5 and 2 °C warming

3. Clean, Green and Blue;Tan,2009

4. Middle-East and Northern Africa Water Outlook;Negewo,2011

5. Water Quality and Treatment,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3