An Automatic Method for Detection and Update of Additive Changes in Road Network with GPS Trajectory Data

Author:

Tang ,Deng ,Huang ,Liu ,Chen

Abstract

Ubiquitous trajectory data provides new opportunities for production and update of the road network. A number of methods have been proposed for road network construction and update based on trajectory data. However, existing methods were mainly focused on reconstruction of the existing road network, and the update of newly added roads was not given much attention. Besides, most of existing methods were designed for high sampling rate trajectory data, while the commonly available GPS trajectory data are usually low-quality data with noise, low sampling rates, and uneven spatial distributions. In this paper, we present an automatic method for detection and update of newly added roads based on the common low-quality trajectory data. First, additive changes (i.e., newly added roads) are detected using a point-to-segment matching algorithm. Then, the geometric structures of new roads are constructed based on a newly developed decomposition-combination map generation algorithm. Finally, the detected new roads are refined and combined with the original road network. Seven trajectory data were used to test the proposed method. Experiments show that the proposed method can successfully detect the additive changes and generate a road network which updates efficiently.

Funder

National Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Graph Sampling for Map Comparison;ACM Transactions on Spatial Algorithms and Systems;2024-08-21

2. End-to-end unsupervised road network extraction based on drone images;International Conference on Remote Sensing, Mapping, and Image Processing (RSMIP 2024);2024-06-21

3. Exploring User Semantic Annotation from Trajectories in the Scenario of Shared Locations;AGILE: GIScience Series;2024-05-30

4. Detecting road network errors from trajectory data with partial map matching and bidirectional recurrent neural network model;International Journal of Geographical Information Science;2024-01-24

5. RNDLP: A Distributed Framework for Supporting Continuous k-Similarity Trajectories Search over Road Network;Mathematics;2024-01-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3