Author:
Yan Chenggang,Hu Chen,Wu Jianhui
Abstract
In this paper, a digital-to-time converter (DTC) based on the three delay lines (3D) Vernier principle is proposed and implemented with field programmable gate arrays (FPGAs). Based on the 3D Vernier principle, the DTC is realized by three period approximate phase locked loops (PLLs). The theoretical fine resolution of the proposed DTC is improved by calculating the period difference two times. The achieved resolution of the proposed DTC is 203 fs realized with an Altera Stratix III FPGA chip, which is about tenfold higher than traditional FPGA-DTC implemented with the same series FPGAs. The worst absolute differential nonlinearity (DNL) and integral nonlinearity (INL) are verified smaller than 0.88 least significant bit (LSB) and 4.4 LSB, respectively. By optimized computation logic, there are only 448 adaptive look-up-tables (ALUTs), 237 registers and three phase locked loops (PLLs) utilized for circuit implementation. Experimental results prove that the proposed DTC features high resolution with low cost.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献