Energy Transfer and Cross-Relaxation Induced Efficient 2.78 μm Emission in Er3+/Tm3+: PbF2 mid-Infrared Laser Crystal

Author:

Liao Jiayu,Chen Qiudi,Niu Xiaochen,Zhang Peixiong,Tan Huiyu,Ma Fengkai,Li Zhen,Zhu Siqi,Hang Yin,Yang Qiguo,Chen Zhenqiang

Abstract

An efficient enhancement of 2.78 μm emission from the transition of Er3+: 4I11/2 → 4I13/2 by Tm3+ introduction in the Er/Tm: PbF2 crystal was grown by the Bridgman technique for the first time. The spectroscopic properties, energy transfer mechanism, and first-principles calculations of as-grown crystals were investigated in detail. The co-doped Tm3+ ion can offer an appropriate sensitization and deactivation effect for Er3+ ion at the same time in PbF2 crystal under the pump of conventional 800 nm laser diodes (LDs). With the introduction of Tm3+ ion into the Er3+: PbF2 crystal, the Er/Tm: PbF2 crystal exhibited an enhancing 2.78 μm mid-infrared (MIR) emission. Furthermore, the cyclic energy transfer mechanism that contains several energy transfer processes and cross-relaxation processes was proposed, which would well achieve the population inversion between the Er3+: 4I11/2 and Er3+: 4I13/2 levels. First-principles calculations were performed to find that good performance originates from the uniform distribution of Er3+ and Tm3+ ions in PbF2 crystal. This work will provide an avenue to design MIR laser materials with good performance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3