Application of Magnetic and Dielectric Nanofluids for Electromagnetic-Assistance Enhanced Oil Recovery: A Review

Author:

Hassan Yarima Mudassir,Guan Beh Hoe,Zaid Hasnah Mohd,Hamza Mohammed Falalu,Adil MuhammadORCID,Adam Abdullahi AbbasORCID,Hastuti Kurnia

Abstract

Crude oil has been one of the most important natural resources since 1856, which was the first time a world refinery was constructed. However, the problem associated with trapped oil in the reservoir is a global concern. Consequently, Enhanced Oil Recovery (EOR) is a modern technique used to improve oil productivity that is being intensively studied. Nanoparticles (NPs) exhibited exceptional outcomes when applied in various sectors including oil and gas industries. The harshness of the reservoir situations disturbs the effective transformations of the NPs in which the particles tend to agglomerate and consequently leads to the discrimination of the NPs and their being trapped in the rock pores of the reservoir. Hence, Electromagnetic-Assisted nanofluids are very consequential in supporting the effective performance of the nanoflooding process. Several studies have shown considerable incremental oil recovery factors by employing magnetic and dielectric NPs assisted by electromagnetic radiation. This is attributed to the fact that the injected nanofluids absorb energy disaffected from the EM source, which changes the fluid mobility by creating disruptions within the fluid’s interface and allowing trapped oil to be released. This paper attempts to review the experimental work conducted via electromagnetic activation of magnetic and dielectric nanofluids for EOR and to analyze the effect of EM-assisted nanofluids on parameters such as sweeping efficiency, Interfacial tension, and wettability alteration. The current study is very significant in providing a comprehensive analysis and review of the role played by EM-assisted nanofluids to improve laboratory experiments as one of the substantial prerequisites in optimizing the process of the field application for EOR in the future.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3