Effects of Recycled Fine Aggregates and Inorganic Crystalline Materials on the Strength and Pore Structures of Cement-Based Composites

Author:

Chen Sung-ChingORCID,Zou Si-Yu,Hsu Hui-Mi

Abstract

Concrete is porous; the partial pores in the internal structure of concrete are generated by hydration products, such as calcium hydroxide, dissolved in water. External harmful substances in the form of gases or aqueous solutions can penetrate concrete. The destruction of the internal structure of concrete leads to problems such as shortening of the service life of concrete as well as the corrosion and poor durability of steel. To improve the pore structure of concrete, a material can be added to concrete mixtures to cause the secondary hydration of the hydration products of cement. This reaction is expected to reduce the pore volume and increase the density of concrete. For existing concrete structures, inorganic crystalline materials can be used to protect the surface and reduce the intrusion of external harmful substances. In this study, the water–binder ratio was 0.4 and 0.6. Three inorganic crystalline materials and recycled fine aggregates (0%, 10%, 20%, and 30% replacement of natural aggregates by weight) were used in the same cement-based composites. The results indicated that all specimens had a high total charge-passed value, and inorganic crystalline material C provided superior protection for green cement-based composites.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3