Synthetic BiOBr/Bi2S3/CdS Crystalline Material and Its Degradation of Dye under Visible Light

Author:

Jin Yunhan,Xing Zhe,Li Yinhui,Han Jian,Lorenz HeikeORCID,Chen JianxinORCID

Abstract

Constructing heterojunction has attracted widespread concerns in photocatalysis research. BiOBr/Bi2S3/CdS composite material with a sea urchin shape was directly obtained by first synthesizing BiOBr microspheres. The morphology, structure and composition of the composite material were characterized by XRD, EDX, SEM and XPS. Dye degradation experiments showed that 83.3% of methylene blue removal was achieved after 2 h of visible light irradiation. The reaction rate under optimal conditions was 0.014 min−1 and the photocatalytic degradation process follows a pseudo-first-order kinetic model. Based on the EPR test results, the main active species involved in the reaction were •O2− and h+. The conduction band and valence band edge potential calculations confirmed the key role of CdS in the production of •O2−.

Funder

National Social Science Fund of China

Open Foundation of State Key Laboratory of Chemical Engineering

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3