Abstract
A synaptic device that contains weight information between two neurons is one of the essential components in a neuromorphic system, which needs highly linear and symmetric characteristics of weight update. In this study, a charge trap flash (CTF) memory device with a multilayered high-κ barrier oxide structure on the MoS2 channel is proposed. The fabricated device was oxide-engineered on the barrier oxide layers to achieve improved synaptic functions. A comparison study between two fabricated devices with different barrier oxide materials (Al2O3 and SiO2) suggests that a high-κ barrier oxide structure improves the synaptic operations by demonstrating the increased on/off ratio and symmetry of synaptic weight updates due to a better coupling ratio. Lastly, the fabricated device has demonstrated reliable potentiation and depression behaviors and spike-timing-dependent plasticity (STDP) for use in a spiking neural network (SNN) neuromorphic system.
Funder
Korea Institute of Science and Technology
National Research Foundation of Korea
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献