Abstract
Control systems require maintenance in the form of tuning their parameters in order to maximize their performance in the face of process changes in minerals processing circuits. This work focuses on using deep reinforcement learning to train an agent to perform this maintenance continuously. A generic simulation of a first-order process with a time delay, controlled by a proportional-integral controller, was used as the training environment. Domain randomization in this environment was used to aid in generalizing the agent to unseen conditions on a physical circuit. Proximal policy optimization was used to train the agent, and hyper-parameter optimization was performed to select the optimal agent neural network size and training algorithm parameters. Two agents were tested, examining the impact of the observation space used by the agent and concluding that the best observation consists of the parameters of an auto-regressive with exogenous input model fitted to the measurements of the controlled variable. The best trained agent was deployed at an industrial comminution circuit where it was tested on two flow rate control loops. This agent improved the performance of one of these control loops but decreased the performance of the other control loop. While deep reinforcement learning does show promise in controller tuning, several challenges and directions for further study have been identified.
Subject
Geology,Geotechnical Engineering and Engineering Geology
Reference43 articles.
1. Deep Reinforcement Learning for Dexterous Manipulation with Concept Networks;Gudimella;arXiv,2017
2. Proximal Policy Optimization Algorithms;Schulman;arXiv,2017
3. Robots that can adapt like animals
4. Mastering the game of Go with deep neural networks and tree search
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献