Learning to Tune a Class of Controllers with Deep Reinforcement Learning

Author:

Shipman William JohnORCID

Abstract

Control systems require maintenance in the form of tuning their parameters in order to maximize their performance in the face of process changes in minerals processing circuits. This work focuses on using deep reinforcement learning to train an agent to perform this maintenance continuously. A generic simulation of a first-order process with a time delay, controlled by a proportional-integral controller, was used as the training environment. Domain randomization in this environment was used to aid in generalizing the agent to unseen conditions on a physical circuit. Proximal policy optimization was used to train the agent, and hyper-parameter optimization was performed to select the optimal agent neural network size and training algorithm parameters. Two agents were tested, examining the impact of the observation space used by the agent and concluding that the best observation consists of the parameters of an auto-regressive with exogenous input model fitted to the measurements of the controlled variable. The best trained agent was deployed at an industrial comminution circuit where it was tested on two flow rate control loops. This agent improved the performance of one of these control loops but decreased the performance of the other control loop. While deep reinforcement learning does show promise in controller tuning, several challenges and directions for further study have been identified.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference43 articles.

1. Deep Reinforcement Learning for Dexterous Manipulation with Concept Networks;Gudimella;arXiv,2017

2. Proximal Policy Optimization Algorithms;Schulman;arXiv,2017

3. Robots that can adapt like animals

4. Mastering the game of Go with deep neural networks and tree search

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Offline Reinforcement Learning for Optimizing Production Bidding Policies;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. Control of conventional continuous thickeners via proximal policy optimization;Minerals Engineering;2024-08

3. Enhancing PI Tuning in Plant Commissioning through Bayesian Optimization;2024 European Control Conference (ECC);2024-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3