Affiliation:
1. Department of Beauty Science, National Taichung University of Science and Technology, Taichung City 403, Taiwan
2. Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
3. Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
Abstract
5-Fluorouracil (5-FU) stands as one of the most widely prescribed chemotherapeutics. Despite over 60 years of study, a systematic synopsis of how 5-FU binds to proteins has been lacking. Investigating the specific binding patterns of 5-FU to proteins is essential for identifying additional interacting proteins and comprehending their medical implications. In this review, an analysis of the 5-FU binding environment was conducted based on available complex structures. From the earliest complex structure in 2001 to the present, two groups of residues emerged upon 5-FU binding, classified as P- and R-type residues. These high-frequency interactive residues with 5-FU include positively charged residues Arg and Lys (P type) and ring residues Phe, Tyr, Trp, and His (R type). Due to their high occurrence, 5-FU binding modes were simplistically classified into three types, based on interactive residues (within <4 Å) with 5-FU: Type 1 (P-R type), Type 2 (P type), and Type 3 (R type). In summary, among 14 selected complex structures, 8 conform to Type 1, 2 conform to Type 2, and 4 conform to Type 3. Residues with high interaction frequencies involving the N1, N3, O4, and F5 atoms of 5-FU were also examined. Collectively, these interaction analyses offer a structural perspective on the specific binding patterns of 5-FU within protein pockets and contribute to the construction of a structural interactome delineating the associations of the anticancer drug 5-FU.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献