Characteristics and Long-Term Trends of Heat Stress for South Africa

Author:

Ncongwane Katlego P.ORCID,Botai Joel O.ORCID,Sivakumar VenkataramanORCID,Botai Christina M.ORCID,Adeola Abiodun M.ORCID

Abstract

Increasing air temperature coupled with high humidity due to ongoing climate change across most parts of South Africa is likely to induce and intensify heat exposure, particularly in densely populated areas. The adverse health implications, including heatstroke, are expected to be common and more severe during extreme heat and heat wave events. The present study was carried out to examine heat stress conditions and long-term trends in South Africa. The study aimed to identify geographical locations exposed to elevated heat stress based on over two decades of hourly ground-based data. Selected heat stress indicators were calculated based on Steadman’s apparent temperature (AT in °C). The trends in AT were assessed based on the non-parametric Mann–Kendall (MK) trend test at 5% significance level. Positive trends were detected in 88% of the selected weather stations except in Welkom-FS, Ficksburg-FS, Langebaanweg-WC, Lambertsbaai Nortier-WC, Skukuza-MP, and Thabazimbi-LP. Approximately 47% of the detected positive trends are statistically significant at 5% significant level. Overall, high climatological annual median (ATmed) values (>32 °C) were observed at 42 stations, most of which are in low altitude regions, predominately along the coastlines. The hottest towns with ATmed values in the danger category (i.e., 39–50 °C) were found to be Patensie-EC (41 °C), Pietermaritzburg-KZN (39 °C), Pongola-KZN (39 °C), Knysna-WC (39 °C), Hoedspruit-LP (39 °C), Skukuza-MP (45 °C), and Komatidraai-MP (44 °C). The results provide insight into heat stress characteristics and pinpoint geographical locations vulnerable to heat stress conditions at the community level in South Africa. Such information can be useful in monitoring hotspots of heat stress and contribute to the development of local heat–health adaptation plans.

Funder

Water Research Commission

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3