Walking Gait Phase Detection Based on Acceleration Signals Using LSTM-DNN Algorithm

Author:

Zhen Tao,Yan Lei,Yuan Peng

Abstract

Gait phase detection is a new biometric method which is of great significance in gait correction, disease diagnosis, and exoskeleton assisted robots. Especially for the development of bone assisted robots, gait phase recognition is an indispensable key technology. In this study, the main characteristics of the gait phases were determined to identify each gait phase. A long short-term memory-deep neural network (LSTM-DNN) algorithm is proposed for gate detection. Compared with the traditional threshold algorithm and the LSTM, the proposed algorithm has higher detection accuracy for different walking speeds and different test subjects. During the identification process, the acceleration signals obtained from the acceleration sensors were normalized to ensure that the different features had the same scale. Principal components analysis (PCA) was used to reduce the data dimensionality and the processed data were used to create the input feature vector of the LSTM-DNN algorithm. Finally, the data set was classified using the Softmax classifier in the full connection layer. Different algorithms were applied to the gait phase detection of multiple male and female subjects. The experimental results showed that the gait-phase recognition accuracy and F-score of the LSTM-DNN algorithm are over 91.8% and 92%, respectively, which is better than the other three algorithms and also verifies the effectiveness of the LSTM-DNN algorithm in practice.

Funder

Central Universities in China

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3