RN-Net: A Deep Learning Approach to 0–2 Hour Rainfall Nowcasting Based on Radar and Automatic Weather Station Data

Author:

Zhang Fuhan,Wang Xiaodong,Guan Jiping,Wu Meihan,Guo Lina

Abstract

Precipitation has an important impact on people’s daily life and disaster prevention and mitigation. However, it is difficult to provide more accurate results for rainfall nowcasting due to spin-up problems in numerical weather prediction models. Furthermore, existing rainfall nowcasting methods based on machine learning and deep learning cannot provide large-area rainfall nowcasting with high spatiotemporal resolution. This paper proposes a dual-input dual-encoder recurrent neural network, namely Rainfall Nowcasting Network (RN-Net), to solve this problem. It takes the past grid rainfall data interpolated by automatic weather stations and doppler radar mosaic data as input data, and then forecasts the grid rainfall data for the next 2 h. We conduct experiments on the Southeastern China dataset. With a threshold of 0.25 mm, the RN-Net’s rainfall nowcasting threat scores have reached 0.523, 0.503, and 0.435 within 0.5 h, 1 h, and 2 h. Compared with the Weather Research and Forecasting model rainfall nowcasting, the threat scores have been increased by nearly four times, three times, and three times, respectively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DFFNet: A Rainfall Nowcasting Model Based on Dual-Branch Feature Fusion;Electronics;2024-07-18

2. Deep learning model for heavy rainfall nowcasting in South Korea;Weather and Climate Extremes;2024-06

3. Research on Precipitation Forecasting Models Utilizing Intermediate Fusion Techniques;2024 6th International Conference on Communications, Information System and Computer Engineering (CISCE);2024-05-10

4. Flood forecasting based on radar precipitation nowcasting using U-net and its improved models;Journal of Hydrology;2024-03

5. A Cross-Modal Spatiotemporal Joint Predictive Network for Rainfall Nowcasting;IEEE Transactions on Geoscience and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3