Thermodynamic Comparison of the Steam Ejectors Integrated at Different Locations in Cogeneration Systems

Author:

Zhao Shifei1ORCID,Wang Chunlan1,Duan Fan1,Tian Ze1

Affiliation:

1. School of Energy and Power Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China

Abstract

Under the challenge of global energy transition, coal-fired cogeneration systems are undergoing a technical revolution towards enhanced efficiency, heating capacity, and flexibility. In this paper, four schemes using a steam ejector integrated into a cogeneration system are designed. Considering operational safety, integrated locations are selected at the front and back of high- and medium-pressure turbines. Subsequently, the thermodynamic and operational characteristics under both design and off-design conditions are analyzed based on a model built in EBSILON Professional. Finally, a sensitivity analysis of the heating process is conducted. The results show that the integration of steam ejectors can increase the waste heat recovery ratio of exhaust steam by 18.42–45.61% under design conditions. The largest waste heat recovery ratio is obtained in System 4, resulting in the power generation efficiency (ηg) and gross energy utilization efficiency (ηp) of 81.95% and 65.53%, respectively. Meanwhile, the steam ejector can expand the power-load regulation range of the cogeneration system, and System 4 has the lowest lower power limit among all the systems. The ηp values of Systems 1–4 reach extreme values at different mixed steam pressures of the ejector. Increasing the pinch point temperature difference reduces the power load ηg and ηp of Systems 1–4. The results provide technical solutions for improving the heating capacity and efficient and flexible operation of cogeneration systems.

Funder

National Natural Science Foundation of China

Project of Central Plains Science and Technology Innovation Leading Talents of Henan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3