Author:
Binder Anna Ronja Dorothea,Spiess Andrej-Nikolai,Pfaffl Michael W.
Abstract
Measurement of cell surface coverage has become a common technique for the assessment of growth behavior of cells. As an indirect measurement method, this can be accomplished by monitoring changes in electrode impedance, which constitutes the basis of electric cell-substrate impedance sensing (ECIS). ECIS typically yields growth curves where impedance is plotted against time, and changes in single cell growth behavior or cell proliferation can be displayed without significantly impacting cell physiology. To provide better comparability of ECIS curves in different experimental settings, we developed a large toolset of R scripts for their transformation and quantification. They allow importing growth curves generated by ECIS systems, edit, transform, graph and analyze them while delivering quantitative data extracted from reference points on the curve. Quantification is implemented through three different curve fit algorithms (smoothing spline, logistic model, segmented regression). From the obtained models, curve reference points such as the first derivative maximum, segmentation knots and area under the curve are then extracted. The scripts were tested for general applicability in real-life cell culture experiments on partly anonymized cell lines, a calibration setup with a cell dilution series of impedance versus seeded cell number and finally IPEC-J2 cells treated with 1% and 5% ethanol.
Funder
Bundesministerium für Bildung und Forschung
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献