Evaluation of Hybrid Fiber Multiscale Polymer Composites for Structural Confinement under Cyclic Axial Compressive Loading

Author:

Joseph Lakshmi1,Madhavan Mini K.1,Jayanarayanan Karingamanna23ORCID,Pegoretti Alessandro4ORCID

Affiliation:

1. Department of Civil Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India

2. Department of Chemical Engineering and Materials Science, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India

3. Center of Excellence in Advanced Materials and Green Technologies (CoE-AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India

4. Department of Industrial Engineering, University of Trento, 38123 Trento, Italy

Abstract

Fiber reinforced polymer (FRP) confinement is recognized as the most promising technique for the strengthening and retrofitting of concrete structures. In order to enhance the performance of conventional epoxy-based FRP composites, nano filler modification of the epoxy matrix was implemented in the current study. In particular, the cyclic loading response of standard concrete specimens externally confined by epoxy-based natural and hybrid fiber reinforced polymer systems was investigated. The confinements were realized with sisal fiber reinforced polymer (SFRP) and hybrid sisal basalt fiber reinforced polymer (HSBFRP). Moreover, the effects of multiwalled carbon nanotubes (MWCNT) were also investigated. Three different specimen sets were considered for study: (i) unconfined specimens, (ii) epoxy-based FRP confined specimens and (iii) MWCNT incorporated epoxy-based FRP confined specimens. The specimens were tested in repeated compressive mode in loading-unloading cycles at increasing displacement levels. The test results revealed that FRP wrapping could enhance the mechanical behavior of unconfined columns in terms of strength and ductility. Moreover, it was evident that the mechanical properties of the epoxy matrix were enhanced by MWCNT incorporation. The developed epoxy-based FRP confinement containing MWCNT ensures improvement in axial strength by 71% when compared with unconfined specimens. The epoxy-based FRP confinement, with and without MWCNT, exhibited a high strain redistribution behavior around the concrete core. In comparison to the unconfined specimens, the confinement could increase the sustained axial strain from 0.6 to 1.4% using epoxy-based FRP confinement and to 1.6% with MWCNT incorporated epoxy-based FRP confinement. Further, an empirical model was developed to predict the ultimate axial stress of concrete columns confined externally with FRP jackets. The ultimate compressive strength obtained from the experimental study was compared with the proposed model, and the observed deviation was lower than 1%.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3