FEHCA: A Fault-Tolerant Energy-Efficient Hierarchical Clustering Algorithm for Wireless Sensor Networks

Author:

Choudhary Ankur,Kumar SantoshORCID,Gupta Sharad,Gong Mingwei,Mahanti Aniket

Abstract

Technological advancements have led to increased confidence in the design of large-scale wireless networks that comprise small energy constraint devices. Despite the boost in technological advancements, energy dissipation and fault tolerance are amongst the key deciding factors while designing and deploying wireless sensor networks. This paper proposes a Fault-tolerant Energy-efficient Hierarchical Clustering Algorithm (FEHCA) for wireless sensor networks (WSNs), which demonstrates energy-efficient clustering and fault-tolerant operation of cluster heads (CHs). It treats CHs as no special node but equally prone to faults as normal sensing nodes of the cluster. The proposed scheme addresses some of the limitations of prominent hierarchical clustering algorithms, such as the randomized election of the cluster heads after each round, which results in significant energy dissipation; non-consideration of the residual energy of the sensing nodes while selecting cluster heads, etc. It utilizes the capability of vector quantization to partition the deployed sensors into an optimal number of clusters and ensures that almost the entire area to be monitored is alive for most of the network’s lifetime. This supports better decision-making compared to decisions made on the basis of limited area sensing data after a few rounds of communication. The scheme is implemented for both friendly as well as hostile deployments. The simulation results are encouraging and validate the proposed algorithm.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3