Piezoelectric Harvesting of Fluid Kinetic Energy Based on Flow-Induced Oscillation

Author:

Xu Ya,Yuan Jiangqi,Sun Daming,Xie Dailiang

Abstract

Flow-induced oscillations widely exist in pipelines, fluid machinery, aerospace, and large-span flexible engineering structures. An inherent energy conversion mechanism can be developed for fluid kinetic energy utilization or acoustic energy harvesting. Fluid-resonant acoustic oscillation is featured by stability, easy operation, and a simple mechanical structure. Acoustic oscillation has high intensity and a mono-frequency, which is beneficial for energy harvesting. A simple cavity with appropriate structural dimensions that can induce fluid-resonant oscillations is set and combined with piezoelectric technology to generate electric power. The energy conversion mechanism is studied numerically and experimentally. The effects of flow velocity on the acoustic frequency, the pressure amplitude, and the output voltage of piezoelectric transducer are analyzed. A stable standing wave acoustic field can be generated in the cavity in a certain range of flow velocity. The results show that the higher intensity acoustic field occurs in the first acoustic mode and the first hydraulic mode and can be obtained in the range of flow velocity 27.1–51.1 m/s when the cavity length is 190 mm. A standing wave acoustic field occurs with a frequency of 490 Hz and a maximum pressure amplitude of 15.34 kPa. The open circuit output voltage can reach 0.286 V using a preliminary transducer. The device designed based on this method has a simple structure and no moving parts. It can harvest the fluid kinetic energy that widely exists in pipelines, engineering facilities, air flow forming around transportation tools, and the natural environment. Its energy output can be provided for the self-powered supply system of low-power sensor nodes in wireless sensor networks.

Funder

Zhejiang Provincial Natural Science Foundation

the Fundamental Research Funds for the Provincial Universities of Zhejiang

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3