Efficiency and Slippage in Draw Gears with Flat Belts

Author:

Krawiec PiotrORCID,Warguła ŁukaszORCID,Waluś Konrad JanORCID,Gawrońska ElżbietaORCID,Ságová ZuzanaORCID,Matijošius JonasORCID

Abstract

This paper presents the measured energy losses in a draw gear with NE22, XH500, LL2, and CFG flat belts. The ranges of torque capacity, slippage occurrence, and transmission efficiency of selected drive belts are also presented. Knowing the exact values of these parameters allows the selection of the most suitable belts for different applications. In addition, belt manufacturers do not provide these data accurately, leading to machine failures and downtime. The paper describes the dependence of belt efficiency and belt slippage as a function of transmission load. Running transmissions with high slippage values are associated with a significant loss of energy and efficiency, rapid wear of the belt and pulleys, and increased operating temperature. In addition, when flat belts are under excessive load, it is common for the belt to quickly fall off the pulleys, interrupting the operation of machinery and equipment. Experiments on a test bench can accurately determine the energy loss caused by transmission belt slippage. The maximum achievable torque of the belt selected for the study, which differed in construction and materials, was around 6 Nm for LL2, XH500, and CFG and 12 Nm for NE22. Slippage reached values of 0.005 to 0.1, while efficiency ranged between 0.60 and 0.97.

Funder

Poznan University of Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3